

MINERAL INSULATED CABLE

MINERAL INSULATED THERMOCOUPLE CABLE

MINERAL INSULATED RTD CABLE

ZHEJIANG TAISUO TECHNOLOGY CO., LTD

www.taisuo.com

Version 2017

Table of Contents

1、	Preface01
2、	Certificates ·········02
3、	Processing Of Mineral Insulated Metal-sheathed Cables03
4、	Brief Description Of Mineral Insulated Metal-sheathed Cables04
5、	Brief Description Of Thermocouple 05
6、	Data Of Mineral Insulated Thermocouple Cables06
7、	Rough Introduction Of Common Thermocouples07
8、	Temperature Range Depending Of Thermoelectrode Diameter ··· ··· ··· ··· ··· 08
9、	Thermocouple Tolerance And Standard ··· ··· ··· ··· ··· ··· ··· ··· ··· ·
10,	Thermocouple EMF VS Temperature (DIN En60584 IEC 60584-1) ··· ··· ··· ··· 10
11、	Quality Inspection And Calibration Of MI Thermocouple Cables
12、	Order Code Of Mineral Insulated Thermocouple Cables12
13,	Operating Temperature Of MI Thermocouple Cables
14、	Error Class And EMF For Thermocouple14
15,	Insulation Materials Of Mineral Insulated Cables15
16、	Physical Properties & Typical Chemical Composition Of Insulation Materials16
17、	Material Designation For Sheath Materials Of MI Thermocouple Cable
18、	Outer Sheath Features Of Mineral Insulated Cables18
19	Chemical Composition Of Common Sheath Material
20、	Specification Of Mineral Insulated Thermocouple Cables
21、	Double Sheath Mineral Insulated Thermocouple Cables
22、	Mineral Insulated Thickwall Sheath Thermocouple Cables 22
23、	Definition/Properties/Order Code Of Mineral Insulated Rtd Cables
24、	Dimension/Cross Section Of Mineral Insulated Rtd Cables
25、	Annex 1:Material Designation For Common Stainless Steel Sheath Materials
26、	Mineral Insulation Material Chemical Composition
27、	Thermocouple Sheath Selection Guide27
28、	Mineral Insulated Thermocouple Compensation Cable

Our Products

Mineral Insulated Cable -- exceptionally durable and long lasting providing unrivalled value

Mineral Insulated Heating Cables -- can provide stable thermal energy for a long periods of time

Mineral Insulated Communication Cables -- capable of transmitting signals stably and reliably over extremely long distances at very low/high temperatures

Mineral Insulated Fireproof Cables -- power can still be safely supplied at higher than 1000°C

Mineral Insulated Thermocouple / Transducer(Rtd) Cables -- quickly and accurately measure temperature,

OUR AIM: TO SAFELY PROVIDE HEAT, USING STABLE HEAT , PRECISE CONTROL HEAT, TO PROVIDE ONE-STOP SERVICE OF THERMAL MANAGEMENT TO OUR CUSTOMERS

THIS CATALOGUE FOCUSES ON MINERAL INSULATED THERMOCOUPLE CABLES AND MINERAL INSULATED TRANSDUCER(RTD) CABLES

【2015-2017】 Management Transformation Year

Taisuo strengthen cooperation with the domestic and foreign reasearch universities, institution and professional manufactory to slove the technology and management bottlencks in the development of industry, such as sloving the weakness on the core material, developing intelligent equipment, high-performance and technical standard. Providing a thorough grounding in the development on specialization segment market, Taisuo fully enhance the self-regulated, self-enhancement ability and development space, perfect technical and management reserve in the relevate industry chain.

[2014] Consolidate Base Year

In the next decade, we aim to become "Well-known enterprises of Temperature measurement and control and related fields, which is as pur a long-term development concept and goals. We aim at the improvement and integration on upstream and downstream of industry chain, in order to contribute to the sustainable development in our field.

[2013] It was a year of expanding production system and creating the brand public praise. Taisuo's products gained the praise on market in military industry, thermoelectricity, chemical industry, nuclear power, machinery, foodstuff, medicine and other fields.

【2012】 Established Hangzhou Operation center to expand domestic and foreign markets. Ningbo Taisuo Technology Co.,Ltd. was upgraded Zhejiang Taisuo Technology Co.,Ltd. in this year.

【2011】 Taisuo passed the ISO: 9001.2008 international quality system certification. Taisuo is assessed as the member of National council of Nuclear Energy Industry Associations.

【2010】 300 thousand meters MI Cable exported to foreign market and gained the praise from clients. In this year, the ratio of Class 1 products reached more than 90%. At the same time we began to research mineral insulated fireproof cables, heating cables and other special cable.

【2006-2008】 Ningbo Taisuo Technology Co.,LTD is set up,basis on investment in temperature controller field.The first production line of MI Cable which can produce annual output 250 thousand meters, was prepared to construct and gone into operation.

[2004] Basis on existing industry, Taisuo prepared to establish relevant technical design and development on temperature controller field.

[1999] Introduced advanced temperature instrument automation S M T operating lines and first-class of detection operating system.

[1997] Taisuo grew out of Huatai. And develop rapidly in the following years.

[1995] Taisuo developed the different series of temperature controller.

[1992] Taisuo built the sale department to sell and produce temperature controller.

[1989] Taisuo built the entrepreneurial team to study temperature automation controller.

Since the beginning of time, people have constantly strived to find and endeavoured to utilize various types of energy. Thermal energy is the one from which mankind has derived the greatest benefits in various energy sources.

Since its inception, Zhejiang Taisuo Technology Co., engaged in thermal management system. Nearly 30 years of continuous investing a mass of manpower and resources into research and development the new products, new technique and new equipments. Synchronization with international advanced technology and combined with the own original technology, has become a famous manufacturer of thermal management system products.

With the development of the times, now energy-saving and pollution reduction has become the whole society's concept of environmental protection. Taisuo has always been taking responsibility for more effective utilization of thermal energy. In order to realize energy saving and emission reduction, we are committed to promoting our technologies to more application of thermal management system.

Also, in order to meet the more needs, we are making every effort to acquire expertise and technology in all the fields. Taisuo built a Temperature Laboratory for precise calibration to verify accuracy of thermal management system products.

In fact, Taisuo takes great pride in our quality and Technology. Nevertheless, we are determined to continue our efforts for research and development in the technology of temperature measurement for the new and better products, foreseeing exact needs of human life and industry.

Hangzhou Operating Center

Factory

TRADEMARK REGISTRATION CERTIFICATE

CERTIFICATES OF CE AND RoHS

PATENT CERTIFICATES

QUALITY MANAGEMENT SYSTEM CERTIFICATE

A MEMBER OF CHINA NUCLEAR INDUSTRY ASSOCIATION

DIRECTOR UNIT OF CHINA INSTRUMENT FUNCTIONAL MATERIALS INDUSTRY ASSOCIATION

Processing of Mineral Insulated Metal-sheathed Cables

Definition

Mineral insulated metal-sheathed cable has an outer sheath of metal with Two to Eight Cores where positive and negative thermoelements run around Circular Pattern, embedded in MgO. Mineral Insulated Cables are suitable to high Mechanical, Chemical, and Electrical stability. Due to good Flexibility, Excellent mechanical strength, and pressureresistance, mineral insulated Thermocouples/RTD's can be installed in complex installations.One or more wire like conductors (cores) are embedded in a high insulation quality MgO and pressed into a metal tube (sheath) made of oxidation and corrosion resistant material. The entire combination is then processed using suitable forming steps to obtain the final dimensions.

Classification

- Mineral insulated thermocouple cables
- Mineral insulated resistance temperature detectors cables
- Mineral insulated fireproof cables
- Mineral insulated heating cables
- Mineral insulated communication cables
- Mineral insulated special cables

Application

Temperature measurement, Signal transmission and special heating for Chemical, pharmaceutical, Food, metallurgy, machinery manufacturing, Nuclear power, thermal power, scientific experiments and other industries

This catalogue is mainly for mineral insulated thermocouple cables and mineral insulated resistance temperature detectors(RTD) cables

Cross-section of mineral insulated thermocouple cables

Cross-section of resistance temperature detectors cables

Definition

Mineral insulated construction results in thermocouples wires that are surrounded by a compacted mineral insulation(MgO) and contained in a sheath such as stainless steel or heat resisting steel, on the basis of this mineral insulated construction, a wide variety of otherwise difficult applications are possible. Compared with general-purpose (protection tube type)thermocouples, sheathed thermocouples have many advantages, such as pressure resistance, shock resistance, fast thermal responsivity and flexible.

Working principle

The Seebeck effect is a phenomenon in which a temperature difference between two dissimilar electrical conductors or semiconductors produces a voltage difference between the two substances. Connection temperature display instrument, the instrument will show the thermocouple generated by the thermal potential of the corresponding temperature value. The thermoelectric potential of the mineral insulated thermocouple will increase with the temperature of the measuring end, The size of thermoelectric power is only related to thermocouple conductor material and temperature difference, It has nothing to do with the length and diameter of the thermoelectric pole.

Number of	O.D	Tolerance	Min.conduct	Min.wall	II Minimum Insulation resistance		sistance	
conductors	D (mm)	(mm)	or Dia. C (mm)	Thick.	Test temperature	Insulation	Test voltages	
	0.5	+0.025	≥ 0.08	>0 05	20°C + 15°C	$\geq 1000 M \Omega m$	50 to 100VDC	
	1 0	± 0.025	0 15	0 10	200-100	> 1000m 32 . III	30 10 100700	
	1.5	±0.025	0.23	0.15	20°C±15°C	≥5000MΩ.m	50 to 100VDC	
Simplex	2.0	±0.025	0.30	0.20				
	3.0	±0.030	0.45	0.30				
	3.2	±0.032	0.48	0.32				
	4.0	±0.040	0.60	0.40				
$ ((\oplus \ominus_{n})) $	4.5	±0.045	0.68	0.45	$20^{\circ}C \pm 15^{\circ}C$	>10000M 0 m		
	4.8	±0.048	0.72	0.48	200-150	≥ 10000WI\$2. M	450 to 550VDG	
S	6.0	±0.060	0.90	0.50				
	6.4	±0.064	0.96	0.54				
D	8.0	±0.080	1.20	0.80				
	9.5	±0.095	1.43	0.95				
	10.8	±0.108	1.62	1.08				
	1.5	±0.025	0.17	0.14				
	2.0	±0.025	0.22	0.18				
Duplex	3.0	±0.030	0.33	0.27				
	3.2	±0.032	0.35	0.29		≥10000MΩ.m		
	4.0	±0.040	0.44	0.36				
$ ((\oplus \Theta)) $	4.5	±0.045	0.50	0.41	20°C±15°C		450 to 550VDC	
	4.8	± 0.048	0.53	0.43				
S S	0.0	± 0.060	0.00	0.54				
D	0.4	± 0.004	0.70	0.56				
	9.5	± 0.080 ± 0.095	1 05	0.72				
	10.8	± 0.000	1.19	0.97				
Triplex	3.2	±0.032	0.29	0.26				
	4.5	±0.045	0.41	0.36				
$\left(\left(\begin{array}{c} \oplus \\ \oplus \\ \oplus \\ \end{array} \right) \right)$	4.8	±0.048	0.43	0.38				
	6.4	±0.064	0.58	0.51	$20 \text{ C} \pm 15 \text{ C}$	≥10000MΩ.m	450 to 550VDC	
S S S S S S S S S S S S S S S S S S S	8.0	±0.080	0.72	0.64				
↓ D	10.8	±0.108	0.97	0.86				

[1] We can supply high purity magnesium oxide (\geq 99.4%MgO).

[2] The insulation of a thermocouple cable has finite conductivity and therefore the insulation resistance decreases as the length of the thermocouple cable increases. The conductance of a specific thermocouple cable is therefore expressed in $S \cdot m^{-1}$ (equivalent to $\Omega^{-1} \cdot m^{-1}$) and the minimum specified insulation resistance is expressed in $\Omega \cdot m$, $K\Omega \cdot m$ or $M\Omega \cdot m$ for thermocouple cables.

[3] Please contact us for more information.

Туре	Material		Recommended Temp.Range °F (°C)	Application
K	+	Ni Cr	22 2200°⊏ (0 1240°C)	Recommended for continuous oxidizing or neutral atmospheres. Mostly
ĸ	-	Ni Si/Ni Al	32-2300 F (0-1260 C)	used above $1000^{\circ}F(530^{\circ}C)$.
N	+	Ni Cr Si	22–2200°⊑ (0–1240°⊂)	Can be used in application where Type K elements have shorter life and
	-	Ni Si	32-2300 F (0-1200 C)	stability problems due to oxidation and the development of "Green Rot".
F	+	Ni Cr	32-1400°⊑ (0-871°⊂)	Recommended for continuous oxidizing or inert atmospheres. Highest
_	-	Cu Ni	32 1000 1 (0 871 C)	thermoelectric output of common calibrations.
	+	Fe		Suitable for vacuum, reducing, or inert atmospheres, oxidizing
J			32−1400°F(0−760°C)	atmospheres with reduced life, iron oxidizes rapidly above 1000 $^\circ F$
	_	Cu Ni	· · · · · · · · · · · · · · · · · · ·	(538°C) so only heavy gauge wire is recommended for high
				temperature.
	+ C		-300-+700°F	Useable in oxidizing, reducing, or inert atmospheres as well
Т		C. Ni	(-184-+371°C)	as vacuum.Not subject to corrosion in moist atmospheres.
	- Cu Ni			Limits of error published for sub-zero temperature ranges.
				Recommended for high temperature, must be protected
	+	PtRh13%		with non-metalic protection tube and ceramic insulators.
R			100-2700°F (538-1482°C)	Continued high temperature usages causes grain growth which can lead
				to mechanical failure. Negative calibration drift caused by rhodium
	_	Pt		diffusion to pure leg as well as from rhodium volatilization.
				Type R is used in industry ,type S in the laboratory.
				Recommended for high temperature, must be protected
	+	PtRh10%		with non-metalic protection tube and ceramic insulators.
			100-2700°E (538-1482°C)	Continued high temperature usages causes grain growth which
S			100 27001 (000 1402 07	can lead to mechanical failure. Negative calibration drift caused
	-	Pt		by rhodium diffusion to pure leg as well as from rhodium volatilization.
				Type R is used in industry ,type S in the laboratory.
	+	PtRh 30%		Similar as $\mathbb{R}^{\delta_{1}}$ but output is lower Also
В			1600-3100°F (871-1705°C)	less suscentible to grain growth and drift
	-	PtRh 6%		

		Minimum insulation resistance					
Applicable thermocouple type	Test temperature (°C)	0.5 <d≤1.6 (Test voltage is 50 Vdc) MO m</d≤1.6 	1.6 <d≤3.2 (Test voltage is 100 Vdc)</d≤3.2 	3.2 <d (Test voltage is 100 Vdc) MO m</d 			
		III 52 . III	MI \$2 . III	III 52 . III			
T,J,E,K,N	300±15	150	300	1000			
J,E,K,N	500±15	7.5	15	30			
E,K,N	800±15	0.075	0.15	0.3			
K,N	1000±15	_	0.003	0.006			
NOTE D denotes	thermocouple cal	ole diameter in mm.					

	The	ermocou	ple Alloy			O D	Max operating		
Туре	Positiv	/e	Negative		EMF at	of conductor	temperature (℃)		
	Material	Symbol	Material	Symbol	100 0	(mm)	Normal	Maxima	
						Φ0.3	700	800	
						Φ0.5	800	900	
V	Ni Cr	КD	Ni Si		4. 096mV	Φ0.8~Φ1.0	900	1000	
ĸ	NT OF		Ni Al			Ф1.2~Ф1.6	1000	1100	
						Φ2.0~Φ2.5	1100	1200	
						Φ3.2	1200	1300	
						Φ0.3	700	800	
					2. 774mV	Φ0.5	800	900	
N	NiCr Si	NP	Ni Si	NN		Φ0.8~Φ1.0	900	1000	
						Φ1.2~Φ1.6	1000	1100	
						Φ2.0~Φ2.5	1100	1200	
						Φ3.2	1200	1300	
	Ni Cr	li Cr EP	Cu Ni	EN	6. 319mV	Φ0.3~Φ0.5	350	450	
						ФО.8~Ф1.2	450	550	
E						Φ1.6~Φ2.0	550	650	
						Φ2.5	650	750	
						Φ3.2	750	900	
						Φ0.3~Φ0.5	300	400	
J	Fe	JP	Cu Ni	JN	5.269mV	Φ0.8~Φ1.2	400	500	
						Φ1.6~Φ2.0	500	600	
						Φ2.5~Φ3.2	600	750	
						Φ0.2~Φ0.3	150	200	
т	Cu	TP	Cu Ni	TN	4. 279mV	Φ0.5~Φ0.8	200	250	
						Φ1.0~Φ1.2	250	300	
						Φ1.6~Φ2.0	300	350	
R	Pt Rh13	RP	Pt	RN	0. 647mV	Φ0.5	1400	1600	
S	Pt Rh10	SP	Pt	SN	0. 646mV	Φ0.5	1400	1600	
В	Pt Rh30	BP	Pt Rh6	BN	0. 033mV	Φ0.5	1600	1700	

Thermocouple Type		JIS C1602			IEC584-2		ASTM E230		
		Temperature range (°C)	Class	Error (°C)	Class	Error (°C)	Temperature range (°C)	Class	Error (°C)
		-40~375	1	±1.5	1	±1.5		C T D	±2.2 or
		375~1000		±0.004 · Itl		±0.004 · Itl	0~1260	510	±0.75%·ltl
ĸ	N	-40~333	2	±2.5	2	±2.5	0 1200	SP	±1.1 or
Ň		333~1200	2	±0.0075 · Itl		±0.0075・ItI			±0.4%·ItI
		-167~40	3	±2.5	3	±2.5	-200~0	STD	±2.2 or
		-200~-167	5	±0.015 · Itl	5	±0.015•Itl	200 0		±2%· t
		-40~375	1	±1.5	1	±1.5		STD	±1.7 or
		375~800		±0.004 · ItI	-	±0.004 • Itl	0~870		±0.5%·ltl
	F	-40~333	2	±2.5	2	±2.5	0 070	SP	±1 or
L		333~900	2	±0.0075 • Itl	2	±0.0075・Itl			±0.4%·ItI
	-167~40	3	±2.5	3	±2.5	-200~0	חדפ	±1.7 or	
		-200~-167	5	±0.015 · Itl	5	±0.015 · Itl	200 0	010	±1%·ltl
		-40~375	1	±1.5	- 1	±1.5	0~760	חדפ	±2.2 or
	.1	375~750		±0.004 · ItI		±0.004 · Itl			±0.75%·ltl
	0	-40~333	2	±2.5	2	±2.5		SP	±1.1 or
		333~750	2	±0.0075 • Itl	2	±0.0075・ItI			±0.4%·ItI
		-40~125	1	±0.5	1	±0.5		חדפ	±1 or
		125~350	•	±0.004 · Itl	-	±0.004 · Itl	0~370	010	±0.75%·ltl
	т	-40~133	2	±1	2	±1	0 070	<u>е р</u>	±0.5 or
		133~350	2	±0.0075 · Itl	2	±0.0075・ItI		35	±0.4%· t
		-67~40	3	±1	3	土1	-200~0	0.7.0	±1 or
		-200~-67	5	±0.015 · Itl	5	±0.015・ItI	200 0	510	±1.5%·ItI
		0~1100	1	±1	1	±1		STD	±1.5 or ±0.25% · t
R,	/S	0~600	2	±1.5	2	±1.5	0~1480	٩D	±0.6 or
		600~1600	2	±0.0025 · Itl	2	±0.0025 · Itl		SP	±0.1%·ItI
		600~1700	2	±0.0025 • Itl	2	±0.0025 · Itl			
I	В	600~800	3	±4	3	±4	870~1700	STD	±0.5
		800~1700	5	±0.005•ItI	3	±0.005•ItI		510	

1. Tolerance is referred to as the maximum allowable deviation between hot junction temperature and the temperature derived from the EMF table.

2. ASTM tolerance is $^\circ\!C$ $\,$ or% $\,$ value for the measured temperature, whichever is greater.

3. \mid t \mid is the measuring temperature indicated by the temperature irrelevant to the symbol + or -.

Improper inner structure for MI cable

As shown, the EMF was unsteady for the improper inner structure of MI thermocouple cable; Even its inner structure would go short circuit because of the shock and impact.

The special advantages of TaiSuo's Mineral Insulation Thermocouple Cable

- Ultra high accuracy
- Ultra long length
- Multiple metal sheath materials
- Customized products

- Ultra long working-life
- High Insulation
- Special configuration

According to the following standards: IEC 584 IEC 61515 ASTM E230

MIC	TC	1	2	3	4	5	6
ble	alqu	Туре	Sheath material	О. D. (ф)	Number of conductors	▼ Error class	Cross- section
co	col	K	304	0.5	2	I	T2C1
ed	, uo	Ν	321	1.0	4	II	T2C2
lat	err	E	316	1.5	6	III	T2C3
ns	The	J	316L	1.6			T2C4
in	-	Т	310S	2.0			T4C1
ral		R	INCONEL600	3.0			T6C1
ne		S	446	3. 2			T6C2
Ä		В		4.0			
				4.8			
				5.0			
				6.0			
				6.4			
				8.0			
				9.5			
				10.0			
				10.8			
				12.7			

Order code example : MIC-TC-N-316-3.0-4-I-T4C1

MI CABLE thermocouple- type (N) - sheath material (SS 316) - sheath diameter (Φ 3. 0) - conductors (4) - error class | - configuration (T4C1).

- 1. The above is common order code, please contact us for more information.
- 2. please refer to page 16 : Error class and EMF table for thermocouple.
- 3. 6 means configuration as below; Please refer to page 6 for details.
- 4. For other sheath materials, please refer to page 19.

Operating Temperature Of MI Thermocouple Cables

Type	Sheath material	Sheath	Recommended operating
Type		DiameterΦ(mm)	temperature (°C)
	304/3041/316/3161/321	0.5~1.0	700
	304/304E/310/310E/321	1.5~8.0	800
		0.5~1.0	700
IZ.	310/310L	1.5~2.0	920
ĸ		3.0~8.0	1050
		0.5~1.0	700
	INCONEL600	1. 5, 62. 0	920
		4,5~8,0	1150
		0.5~1.0	700
	304/304L/316/316L/321	1.5~8.0	800
		0.5~1.0	700
	310/310L	1.5~2.0	920
Ν		3.0~8.0	1050
		0.5~1.0	700
	INCONEL 600	1.5~2.0	920
	INCONCLOUD	3.0	1070
		4.5~8.0	1150
		0.5~1.0	300
	204/2041/216/2161/221	1.5~2.0	510
	304/304L/310/310L/321	3.0	730
		4.5	800
		0.5~1.0	300
		1 5~2 0	510
E	310/310L	3.0	650
		4.5	730
		6.0~8.0	820
		0.5~1.0	300
		1.5~2.0	510
	INCONEL600	3.0	650
		4.5	730
		6.0~8.0	820
		0.5~1.0	260
	204/2041/214/2141/221	1.5~2.0	520
	304/304L/310/310L/321	3.0	620
		6.0~8.0	720
		0.5~1.0	260
		1.5~2.0	440
J	310/310L	3.0	520
		4.5	620
		6.0~8.0	720
		0.5~1.0	260
		1.5~2.0	440
	INCONEL600	3.0	520
		4.5	620
		6.0~8.0	720
	301/3011/316/2161/221	0.5~2.0	200
	JU4/ JU4L/ JIO/ JIOL/ JZI	4 5~8 0	370
		0.5~2.0	260
Т	310/310L	3.0	315
		4.5~8.0	370
		0.5~2.0	260
	INCONEL600	3.0	315
		4.5~8.0	370

Note: The service life and temperature range of the MI thermocouple cable is effected by measurement medium and operating condition. The above data is for your reference.

Туре		"T" Cu-CuNi	"」" Fe-Cu	"E" NiCr- CuNi	"K" NiCr-NiSi	"N" NicrSi-NiSi	"S" PtRh10%- Pt	"R" PtRh13%-Pt	"B" PtRh30%- PtRh6%
Calibra	tion	IS2056/ ASTM E230	IS2056/ ASTM E230	ASTM E230	IS2054/ ASTM E230	ASTM E230	IS2055/ ASTM E230	IS2055	IS6720
Tolerences	Standard	±1°C or ±0.75%	±2. 2℃ or ±0. 75%	±1.7°C or±0.5%	±2. 2°C or ±0. 75%	±2. 2°C or ±0. 75%	±1. 5°C or ±0. 25%	±1. 5℃ or ±0. 275%	±1.5°C
Tolerences	Special	±0. 5°C or ±0. 4%	±1. 1°C or ±0. 4%	±1°C or ±0.4%	±1. 1 or ±0. 4%	±1. 1°C or ±0. 4%	±0. 6°C or ±0. 1%	±0. 6°C or ±0. 1%	0VER800°C
	-100	-3.379	-4.633	-5.232	-3.554	-2.407	-	-	-
	0	0	0	0	0	0	0	0	0
	100	4.279	5.269	6.319	4.096	2.774	0.646	0.647	0.033
	200	9.288	10.799	13.421	8.138	5.913	1.441	1.469	0.178
	300	14.862	16.327	21.036	12.209	9.314	2.323	2.401	0.431
	400	20.872	21.848	28.946	16.397	12.974	3.259	3.408	0.787
	500	-	27.393	37.005	20.644	16.748	4. 233	4. 471	1.242
О е	600	-	33.102	45.093	24.905	20.613	5.239	5.583	2.431
aturo	700	-	39.132	53.112	29.129	24. 527	6.275	6.743	3.154
per	800	-	45.494	61.017	33.275	28.455	7.345	7.950	3.957
Tem	900	-	-	68.787	37.326	32.371	8.449	9.205	4.834
	1000	-	-	76.373	41.276	36.256	9.587	10.506	5.78
	1100	_	-	-	45.119	40.087	10.757	11.850	6.786
	1200	-	-	-	48.383	43.846	11.951	13.228	7.311
	1250	-	-	-	50.644	45.694	12.554	13.926	7.848
	1300	-	-	-	52.410	47.513	13.159	14.629	8.956
	1400	-	-	-	-	-	14.373	16.040	10.099
	1500	-	-	-	-	-	15.582	17.451	11.263
	1600	-	-	-	-	-	-	-	12.433

Magnesium Oxide, white powder, odorless, tasteless and non-toxic, can slowly absorb carbon dioxide in the air. Formula is MgO , Melting point: 2852°C, Boiling Point: 3600°C, Density: $3.58g/cm^3(25^{\circ}C)$.

Aluminum oxide, formula is AL₂O₃, is a kind of high hardness compound, melting point :2054°C, boiling point : 2980°C, white solid insoluble, odorless, tasteless, hard texture, easy moisture absorption and non-deliquescent (no hygroscopic in burning).

Insulation resistance of MgO & AL₂O₃ under different temperature

DC Voltage Insulation resistance of cables measured with 20VDC

Insulation resistance of MgO under different temperature

AC Voltage Insulation resistance of cables measured with 500V-AC50Hz.

Physical Properties & Typical Chemical Composition of Insulation Materials

physical properties	Unit	MgO	Al ₂ O ₃
Density (crystal)	g/cm³	3. 65	3. 98
Density in MIC	g/cm ³	3	2.9
Melting point	°C	2800	3000
Specific Heat (20-300°C)	J/gK	1.03	0.95
Coefficient of Exp. (20-200°C)	10 ⁻⁶ /K	11.3	6.55
Coefficient of Exp. (20-600°C)	10 ⁻⁶ ∕K	13.2	7.62
Resistivity 20°C	Ω·m	5×10 ¹⁶	1×10 ¹⁴
Resistivity 400°C	Ω·m	1×10 ¹³	1×10 ¹²
Resistivity 800°C	Ω·m	5×10 ⁸	2×10 ⁸
Dielectric Constant 20°C	-	5	9
Knoop Hardness	N/mm ²	3700	21000
Modulus of Elasticity 20°C	N/mm ²	3×10⁵	3. 6×10⁵

Typical composition of insulation materials MgO/Al_2O_3

Composition	MgO(97%)	MgO(99.4%)	Al ₂ O ₃
MgO	≥98. 0	≥99. 715	0.08
Al ₂ O ₃	0. 4	0.05	99.8
CaO	0. 35	0.198	0.004
Fe ₂ O ₃	0. 15	0.051	0.009
SiO₂	0. 35	0.026	0.08
B&Cd	<10 ppm	<1 ppm	<10 ppm

Material Designation For Sheath Materials of MI Thermocouple Cable

		GERMANY	USA	BS	FRANCE	JAPAN	CHINA
NU	WNR	DIN	AISI	BS	AFNOR	JIS	GB
1	1. 4301	X5CrNi18-9	304	304S	Z6CN18-09	SUS304	06Cr19Ni10
2	1. 4306	X5CrNi19-11	304L	304S	Z2CN18-10	SUS304L	022Cr19Ni10
3	1. 4401	X5CrNiMo18-10	316	316S	Z6CND17-11	SUS316	06Cr17Ni12Mo2
4	1. 4404	X2CrNiMo18-10	316L	316S	Z2CND17-12	SUS316L	022Cr17Ni12Mo2
5	1. 4541	X6CrNiTi18-10	321	321\$	Z6CNT18-11	SUS321	06Cr18Ni11Ti
6	1. 4550	X6CrNiNb18-10	-	347\$	Z6CNNb18-11	SUS347	06Cr18Ni11Nb
7	1. 4571	X6CrNiMoTi17-12-2	316T i	320\$31	Z6CNDT17-12	SUS316Ti	06Cr17Ni12Mo3Ti
8	1. 4845	X12CrNi25-21	310S	310S	Z12CN25-20	SUS310S	06Cr25Ni20
9	2. 4816	Alloy600	INC600	-	NC15Fe	NCF600	NS3102
10	2. 4851	Alloy601	INC601	-	-	NCF601	NS313
11	1. 4876	Alloy800	INC800	NA15	Z10NG32-21	NCF800	NS1101
12	2. 4858	Alloy825	INC825	NA16	NFe32C20DU	NCF825	Ns142

Note: Please contact us for more information.

Material	Working environment	Max operating temperature
304	Oxidizing/Reducing/Neutral/Vacuum	930°C
321	Oxidizing/Reducing/Neutral/Vacuum	930°C
316/316L	Oxidizing/Reducing/Neutral/Vacuum	980°C
3105	Oxidizing/Reducing/Neutral/Vacuum	1100°C
446	Oxidizing/Reducing/Neutral/Vacuum	1100°C
INCONEL600	Oxidizing/Reducing/Neutral	1150°C

The Loss In Weight Of Different Sheath Materials In Burning Test

Different sheath materials were heated in air in a cycle as follows:15 mins up to $980^{\circ}C$ (indirect heating), 5 mins cooling to room temperature, 15 mins up to $980^{\circ}C$ and so on.

The diagram below shows the loss in weight (in %) of the specimen versus the test duration (in hours) as a result of the flaking layers of oxide.

It is clear that the scaling resistance of the alloys increases with the sum of nickel and chromium, at 980°C with temperature variation it is excellent in INCONEL 600 (2,4816) and still good in 1.4841. On the other hand 18-9 steels are not suitable for applications at this temperature.

No	Sheath		Composition weighting (%)								
NO.	Material	С	Si	Mn	Р	S	Ni	Cr	Others		
4	SUS321	≪0. 12	≤1.00	≤2. 00	≪0. 035	≪0. 03	8~10	17~19	Ti:[5X(C−0.02)]~0.80		
	ASTM321	≪0. 08	≤1.00	≤2. 00	≪0. 035	≪0. 03	9~12	17~19	Ti≥5XC		
2	ASTM304	≪0. 07	≤1.00	≤2. 00	≪0. 035	≪0. 03	8~11	17~19	-		
2	ASTM304L	≪0. 03	≤1.00	≤2. 00	≪0. 035	≪0. 03	8~12	18~20	-		
	ASTM316	≪0. 08	≤1.00	≤2. 00	≪0. 045	≪0. 03	10~14	6~18	Mo:2~3		
3	ASTM316L	≪0. 03	≤1.00	≤2. 00	≪0. 045	≪0. 03	10~14	6~18	Mo:2~3		
	ASTM316Ti	≪0. 08	≤1.00	≤2. 00	≪0. 045	≪0. 03	11~14	6~18	Mo:2∼3 Ti: (5XC) ~0.70		
4	ASTM310S	≪0. 08	≤1.00	≤2. 00	≪0. 045	≪0. 03	19~22	24~26	-		
5	INCONEL600	≪0. 15	≪0. 50	≤1.00	≤0.03	≪0. 15	>72	14~17	Fe:6~10 Cu: <0		

Chemical Composition Of Special Sheath Material

Copper sheath material

Material	Composition	Composition weighting (%)				
Wateria	Cu+Ag	Р				
Tp2	99.9	0. 015~0. 040				

Aluminum sheath material

Material		Composition weighting (%)								
Wateria	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	Al	
6061(Al-alloy)	0.4~0.8	0. 7	0. 15~0. 4	0. 15	0.8~0.12	0.04~0.35	0. 25	0. 15	-	

Note: Please contact us for more information.

(Aluminum sheath)

(Copper sheath)

(SS/nickel base alloy sheath)

Table 1: Length of MIMS cable (K/N/E/J/T)

Calibtation	O.D.(mm)	Normal sheath(m)	Special Sheath(m)
	0.5		
	1.0	Oproquest	Oproquest
	1.5	Onrequest	Onrequest
	1.6		
	2.0	400	_
	3.0	230	3000
	3.2	200	2500
K/ N/ E/ J/ I	4.0	130	1600
	4.8	85	1100
	5.0	80	1000
	6.0	60	700
	6.4	50	600
	8.0	30	400
	12.7	11	140

Note: Please refer to our sales for special request .

Table 2: Properties of MIMS cable (S/R/B)

Outer sheath data (mm)		Min. conductor diameter(mm)	Sheath material	length	
Outer Diameter(φ)	Min. wall thick.(mm)	S/R/B	Sheath materia	Length	
3. 0	0. 30	0.30			
3. 2	0. 32	0.30			
4. 0	0. 40	0.40			
4. 8	0. 48	0.45	INCONEL 600	On request	
5. 0	0. 50	0.45	moonelozo		
6. 0	0. 60	0.45			
6.4	0. 64	0.45			
8. 0	0. 80	0.45			

Note: Please refer to our sales for special request.

Definition

Its processing is special, that is : two layers of metal sheath is drawn and becomes relatively small diameter, in the meanwhile, the gap between sheath becomes the smallest. In high temperature (≤ 1280 °C), this material has excellent stability. After it was made into the temperature sensor, it can replace platinum and rhodium thermocouple in some occasaions .

Double-layer mineral Insulated thermocouple cable has good properties, such as high temperature resistance, oxidation resistance and long service life; even in the 1100°C high temperature and hydrogen (H2) of the reducing gas, it can work normally.

Outer diameterΦ (mm)	4.8/5.0	6.0/6.4	8.0	10.0	12.0	12.7	16.0
WireΦ(mm)	0.7	1.1	1.1	1.0	2.0	2.4	2.5
Wall thickness of double layer (mm)	0.9	1.4	1.4	2.2	2.2	2.2	2.3
Max. operating temperture for long term (°C)			1150				
Max. operating temperture for short term (°C)		1250			1250		

Dimensions and operating temperature data

Note: The above data is just for reference.

Sectional Draff Of Double Sheath MI Thermocouple

Comparison of Sectional configuration

The conventional thermocouple is used with an outer protecting tube or thermowell to protect it from aggressive and corrosive process condition. This improves longevity of the thermocouple. However, response time is poor. To overcome above problem, we have designed MI Thickwall Thermocouple having thicker wall with relatively larger conductor diameters. This construction enable the user to insert the thermocouple directly in the process without a protecting tube or thermowell, improving response time considerably. Its normal applications are Furnaces, rotary kilns, recuperators.

Its normal sheath material is available in SS316/SS310/INCONEL600/ INCONEL800/SS446/GH2747.

Properties

- Faster response
- Long lengths can be offered
- Pliable and easily routed
- Available in \$\$316,\$\$310,Inconel 600,Inconel800

Dimonci	one and	oporati	ing tom	noraturo d	ata
Dimensi	Uns anu	i operati	ing tem	perature u	Idld

Diameter (mm)	Φ5	Φ6/Φ6.4	Φ8	Φ10	Φ12	Φ12. 7	Φ16	
Min. Dia. of Wire (mm)	Φ0.7	Φ1.1	Φ1.1	Φ1.4	Φ2.0	Φ2.4	Φ2.5	
Wall thickness (mm)	0. 88	1.1	1.4	1.9	2.1	2.1	2.3	
Max. operating temp.for long term (°C)		1 '	100		1150			
Max. operating temp.forshort term (°C)		12	250			1250		

Defination

MI RTD(resistance temperature detector) Cable construction results in pure nickel wire or pure copper that are surrounded by a compacted mineral insulation(Mgo) and contained in a sheath such as stainless steel or heat resisting steel, on the basis of this mineral insulated construction, a wide variety of otherwise difficult applications are possible.

Order code

MIC	RTD	1	2	3	4	5	6
	↓		•		. ↓	•	•
ble	RTD	Conductor	Sheath material	Outer Dia. (φ)	NO. of conductors	Cross	Note
са	6 G	Ni	304	2.0	2	R2C1	
ed	ate	Cu	321	2.5	3	R2C2	
lat	sul	Ag	316	3. 0	4	R3C1	
nsı	eri	Others	316L	3. 2	6	R3C2	
	e Si		310S	4. 0	8	R3C3	
era	ine		INCONEL600	4. 8		R3C4	
ine	° ≥ °		TP2	5.0		R4C1	
Σ				6.0		R4C2	
				6.4		R4C3	
				8.0		R6C1	
				9.5		R6C2	
				10.0		R6C3	
				12.7		R6C4	
						R8C1	

Order code example:MIC-RTD-Cu-304-3.0-4-R4C1

MI Cable-RTD -conductor material (Cu) -Outer sheath material (304) -Outer diameter (Φ 3. 0) -number of conductor (4 cores) - Cross section (R4C1).

Note:

- 1. The above is common order code, please refer to our sales for other information.
- 2、 5 Means cross section ; Please refer to page 6 for details.

Sheath material	Max.operating temperature (°C)	Melting point (°C)	Standard sheath dimensions Φ (mm)
TP2(Copper)	350	1080	On request
304	930	1400	
321	930	1350	
316	980	1370	12 7
INCONEL600	1100	1345	12.7

Sheath Material And Operating Temperature

Outer Dia. Φ (mm)	Wall thick. (mm)	Conductor Dia. (mm) Ni/Cu	Purity of MgO	Sheath Material	Common length (m)	Special length (m)
2.5±0.025	≥0. 25	≥0. 32			320	≥700
3.0±0.030	≥0.30	≥0.4		304	230	≥500
3.2±0.032	≥0. 32	≥0.4]	321	200	≥400
4.0±0.040	≥0.40	≥0. 53		316	130	≥300
4.8±0.048	≥0. 48	≥0. 64		316L	85	≥200
5.0±0.050	≥0.50	≥0.67	≥90%	310S	80	≥200
6.0±0.060	≥0.60	≥0.8]	INC600	60	≥150
6.4±0.064	≥0.64	≥0.85		Tp ₂	50	≥150
8.0±0.080	≥0.80	≥1.06]		30	≥150
12.7±0.127	≥1.27	≥1. 69			10	≥80

Note:1.Please contact us for more information.

Spacing Of Conductors

Table 1: Standard Spaced

Qty Of	Diameter Of Outer Sheath(D)											
Conductor	1. 0	1. 5	2.0	3.0	3.2	4.5	6.0	8.0				
2	Х	Х	Х									
3	Х	Х	Х	(d)0.9	(d) 1 0	(d) 1 5	(d) 2 0	(d) 2 7	Inner Circle			
4	Х	Х	Х		(u) 0. 9	(u) 0. 9	(u) 0. 9		(a) 1. 0	(0)1.5	(0)2.0	(0)2.7
6	Х	Х	Х						(d)			
8		Not available										
8 Not available												

Table 2: Wide Spaced

Qty Of										
Conductor	1. 0	1. 5	2.0	3.0	4.0	4.5	6.0	8.0		
2	X	Х	Х	Х						
3	Х	Х	Х	Х	(d)2.12	(d) 2. 12 (d) 2. 38	(d)2.38	(4) 3 18	$(d) \wedge 2 \wedge$	Inner Circle
4	Х	Х	Х	Х			(4) 5. 10	(u) 5. 10 (u) 4. 24	Diameter	
6	Х	Х	Х	Х	Х	Х			(d)	
8	X	Х	Х	Х	Х	Х				

CHINA	Japan	USA	BS	GERMANY	France
GB1220-2007	JIS	AISI UNS	Bs970 part4 Bs1449 Part2	DIN17440 DIN17224	NFA35-576~582 NFA35-584
0Cr13	SUS410S	S41000		X7Cr13	Z6C13
1Cr13	SUS410	410	410S21	X10Cr13	Z12Cr13
2Cr13	SUS420J1	420	420\$29	X20Cr13	Z20Cr13
		\$4200	420\$27		
3Cr13	SUS429J2		420\$45		
3Cr16	SUS429J1				
1Cr17Ni2	SUS431	431	431\$29	X22CrNi17	Z15CN-02
70r17	SIIS440A	440A			
		\$44002			
110r17	SUS4400	4400			
110117	0004400	\$44004			
80r17	SUS440B	44013			
00117	3004400	\$44003			
00x15N:7M=2A1		422			
000 - 12	SUS 410	032			
	SUS410	405			
UGFI3AI[UUGFI3AI]	505405	405	405047	X70 4140	7/04/0
40.45	0110 400	\$40500	405517	X/UrAII3	260A13
10r15	SUS429	429			
10r17	SUS430	430			
		\$43000	430\$15	X8Cr17	28017
[Y1Cr17]	SUS430F	430F			
		\$43020		X12CrMoS17	Z10CF17
		\$43400	434\$19	X6CrMo17	Z8cd17.01
1Cr17Ni7	SUA301	301			
		\$30100	301\$21	X12CrNi177	Z12CN17.07
1Cr17Ni8	SUS301J1			X12CrNi177	
1Cr17Ni9	SUS302	302	302\$25	X12CrNi188	Z10CN18.09
1Cr18Ni9Si3	SUS302B	302B			
Y1Cr18Ni9	SUS303	303	303\$21	X12CrNiS188	Z10CNFS18.09
Y1Cr18Ni9Se	SUS303Se	303Se	303\$41		
OCr18Ni9	SUS304	304	304S15	X2CrNi89[1.4301]	Z6CN18.09
		S30400			
00Cr19Ni10	SUS304L	304L	304S12	X2CrNi189[1.4306]	Z2CN18.09
		\$30403			
OCr19Ni9N	SUS304N1	304N			Z5CN18. 09A2
		S30451			
00Cr19Ni10NbN	SUS304N	XM21			
		\$30452			
00Cr18Ni10N	SUS304LN			X2CrNiN1810	Z2CN18, 10N
1Cr18Ni12	SUS305	\$30500	305\$19	X5CrNi911	Z8CN18, 12
[OCr20Ni10]	SUS308	308			
0Cr23Ni13	SUS3095	3095			
0Cr25Ni20	SUS310S	3105			
0Cr17Ni12Mo2	SUS316	316	316516	X50rNiMo1812[1_4436]	76CND17 12
00Cr17Ni1/Mo2	SUS316	316	316512	X2CrNiMo1812[1_4435][1_4404]	72CND17 12
0Cr17Ni12Mo2N	SUS316N	316N	010012	7201111101012[1.4403][1.4404]	
000r17Ni12mo2N				X2CrNiMoN1812[1 4420]	720ND17 12N
	303310LN		320817	X201111001012[1.4427]	760ND17.12N
	011024 4 14		520317		2001017.12
	30331001				
000r18N114Mo20u2	505316J1L	221 022402	201012 001000	X400 N: T: 400	7/01/10 10
	505321	321, 332100	321312, 321820	ATUGENTITI89	200N118.10
TCr18Ni12Mo3Ti	0110047	047	04704 (
0Cr19Ni13Mo3	SUS317	317	317\$16		

Tables B.1 and B.2 show typical chemical composition of insulation material for MI thermocouple cables and MI RTD Cables.

Table B.1 - Chemical Composition In Weight Percent Of Recommended Magnesia (MgO)

Purity grade	Maximum impurity contents %								
magnesia)	SiO₂	CaO	Al ₂ O ₃	Fe ₂ O ₃	В	Cd	S	С	
Standard purity(96%)	3.50	1.50	4.00	0.15	0.005	0.001	0.0025	0.020	
Medium purity (97.0%)	1.20	0.80	1.00	0.10	0.005	0.001	0.0025	0.020	
High purity (99.4%)	0.13	0.35	0.15	0.10	0.0025	0.001	0.0025	0.020	

Table B.2 - Chemical Composition In Weight Percent Of Recommended Alumina (AI_2O_3)

Purity grade	Maximum impurity contents %									
alumina)	SiO₂	CaO	MgO	Fe₂O₃	ZrO₂	В	Cd	Na₂O	S	С
High purity (96%)	0.10	0.08	0.08	0.10	0.080	0.001	0.001	0.06	0.005	0.01

I	Metric / Imperial Conversion Formula	Example
1	1feet = 0 . 3 0 4 8m	1 0 0 feet×0 . 3 0 4 8 = 3 0 . 4 8 m
2	1 inch= 2.54 c m	100 inch×2.54=254cm

Т	emperature Unit Conversion Formula	Example
1	°F= (180/100×°C) +32	75°C= (180/100×75) +32=167°F
2	°C=100/180× (°F-32)	212°F=100/180×(212-32)=100°C
3	Fa (°R) =°F+460	40°F=40+460=500Fa (° R)
4	K=°C+273	-10°C=-10+273=263K

SHEATH MATERITL	MA OPERA TEN	X. TING 1P.	MATERIAL PROPERTIES
	304	900	SS304the most common grade; the classic 18/8 (18% chromium, 8% nickel) stainless steel. SS304Lsame as the 304 grade but lower carbon content to increase weldability. Is slightly weaker than 304.
	321	900	Similar to 304 but lower risk of weld decay due to addition of titanium.
300 SERIES AUSTENITIC CHROMIUM	316	900	the second most common grade (after 304); for food and surgical stainless steel uses; alloy addition of molybdenum prevents specific forms of corrosion. It is also known as marine grade stainless steel due to its increased resistance to chloride corrosion compared to type 304. 316 is often used for building nuclear reprocessing plants.
NICKEL ALLOYS	316L	930	is an extra low carbon grade of 316, generally used in stainless steel watches and marine applications, as well exclusively in the fabrication of reactor pressure vessels for boiling water reactors, due to its high resistance to corrosion.
	3105	150	is a highly alloyed austenitic stainless steel used for high temperature application. The high chromium and nickel content give the steel excellent oxidation resistance as well as high strength at high temperature. This grade is also very ductile, and has good weldability enabling its widespread usage in many applications.
400 SERIES FERRITIC AND MARTENSITIC CHROMIUM ALLOYS	446	1090	For elevated temperature a service higher grade of cutlery steel, with more carbon, allowing for much better edge retention when properly heat-treated. It can be hardened to approximately Rockwell 58 hardness, making it one of the hardest stainless steels.
	600		Inconel alloys are oxidation- and corrosion-resistant materials well
AUSTENITIC NICKEL-	601	1150	suited for service in extreme environments subjected to high pressure and kinetic energy. When heated, Inconel forms a thick and stable passivating oxide layer protecting the surface from further attack.
CHROMIUM-BASEE SUPERALLOYS	800		high-temperature application.

Definition

Mineral Insulated Thermocouple Compensation Cable is consisted of 3 parts: metal sheath in stainless steel, copper or other metal; insulator such as magnesium oxide or alumina; compensation conductor. After assembled, it becomes the solid body by drawing(or swaging); the structure is different with conventional compensation wire. Its mainly usage is temperature compensation on thermocouple cold junction.

Properties

Compared with the conventional compensation wire, Mineral insulated thermocouple compensation cable has the advantages of pressure resistance, shock resistance, high temperature resistance, anti-radiation, anti-explosion, high mechanical strength and long working life.

Usage

It is used to connect the hot electrode (the cold junction of the thermocouple) with the Temp. Controller, which compose the temperature measurement system. It can be fit for a variety of temperature measurement devices. Its effects is according to "IEC584-3" standards.

Mineral Insulated Thermocouple Compensation Cable, as upgrading products of the conventional type, is popular be used in Electricity, Metallurgy, Petroleum, Chemical Industry, intelligent equipment and defense and other high-tech industries.

POPULAR PRODUCT Copper Sheath Cable B/R/S Positive :Cooper Negative : Copper-Nickel Alloy K/N/E/J/T Type is Available. Stainless Steel Sheath Is Available.

Other Products

Taisuo technology focuses on developing the serialization products of thermal management system with high quality. In addition to the mineral insulated cable series, we can also provide the Temperature Sensors, Sensor Related Accessories, Temperature Controllers etc.

Hex Fittings & Compression Fittings

Terminal blocks

Sensor connection heads

Taisuo Website Taisuo Wechat

ZheJiang Taisuo Technology Company,.Ltd

Address: 2 East Yuzhou Road, Yuyao City, Zhejiang, China 315400

Tel.: 0086-574-62506588 / 62505590 Fax: 0086-574-62506589 E-mail : tst@taisuo.com www.taisuo.com